
Securing Server/Client side Applications against
XSS attack via XSS-Obliterator

Amit Singh#1, Suraj Singh Tomer*2

Mtech Computer Science Engineering, RGPV
Airport Bypass Road, Gandhi Nagar, Bhopal, Madhya Pradesh 462036

Abstract— In the modern technological epoch, the internet
advancement is at its peak and the web services are emerging
more towards dynamic than static web pages. In order to serve
the demands, websites holds many applications that extensively
opens door for several script-languages. Contrarily, Cross-site-
scripting (XSS) attack exploits wide variety of Script-languages
and various programming techniques that can easily breach the
security of the website. This paper presents a model of XSS-
obliterator which supplements the security at client/server side
with the mechanism of two-way filter and delivers a platform-
independent elucidation to cater security against enormous
variants of XSS attack. To address the security issues, an open-
source PHP based website is evaluated to render threat against
XSS-vectors injected in input fields, URL and source-code using
two commercial browsers. As a result of evaluation, the
vulnerable sections of the website are declared as high/low
recommendation for the proposed model. Considering the
extracted artifacts, an experiment has been conducted on the
website using the proposed model for detecting and sanitizing all
the variants of XSS vectors.

Keywords— Cross-site-scripting (XSS), Input validation,
Escaping, Sanitization, Document –object-model (DOM),
Reflection point.

I. INTRODUCTION AND MOTIVATION
Cross site scripting (XSS) is conceivably one of the

most devastating web-attack. It is ranked in top 3
vulnerabilities in “OWASP Top Ten report 2013” [1] and
forth in “CWE/SANS Top 25 Most Dangerous Software
Errors” [2]. For a cyber-attacker to acquire the control of
the website he doesn’t need to break the security of the web
server and then upload or alter the files on that server,
indeed the attacker can execute XSS attack vectors at the
client-side to acquire the control and upload/alter files on
that server. The modern web pages fetch data from many
different sources and to meet the demand of higher graphics
and ever changing content in the web pages they are
designed dynamic. Different sources of data contain simple
text, images, flash, HTML tags, graphics, videos, music
etc. In 2013, the IBM X-Force research team affirmed in
“Mid-Year Trend and Risk Report 2013” a detailed
analysis of current security landscape, including data on
main cyber threats and information on mitigation
techniques. The report targets social media as a prime
parameter for depicting cyber criminal activities and the
users of such websites are unaware of the ongoing
menaces. The cyber-attackers also take advantage of the
low level security or the accidental flaw left at the time of
development of web applications. Majority of web
applications continues to be vulnerable to basic SQL
injection or cross-site scripting attacks, despite the high
level of awareness on these categories of menaces [3].

XSS is an attack in which attacker manipulates the input
fields and URL links or source-code of the website by
injecting malicious scripts into it. If the input parameters
are not validated or sanitized properly, it eases the attacking
likelihood of the attacker. The attacker most often use the
JavaScript language but in rare cases VBScript, ActiveX,
HTML or flash may also be used by the attacker to
explicitly inject the malicious code at the client-side. Once
the attack is formulated, attacker can perform activities like
changing the admin and user settings, gain access of admin
panel through Shell, cookie grabbing and poisoning or
uploading unwanted contents into the website. Cross-Site
Scripting (XSS) attack has shown a drastic growth in
breaching the security of websites. Even the tool kiddies
are successful in breaching security of many popular
websites in the past few years. Cross-Site Scripting (XSS)
has unavoidably become the prime security issue in the
modern websites. The security analysts prefer to go with
fully automated commercial scanners to ensure the
vulnerabilities of the website but recent research [4]
rendered that such scanners shows imperfect results when
concerned with persistent XSS and DOM-based XSS. This
is because of the dynamic nature of boundless combination
of XSS vectors to manipulate the vulnerabilities of the
websites. The software developers and security
professionals must focus on some of the vulnerabilities
usually found in web-sites which may lead to severe
damage of web applications.

It may become easy to prevent XSS vulnerabilities
during code development by focusing on the identification
of some least secure coding. As once they are identified, it
becomes very easy to resolve them. XSS basically targets
scripts that are injected in a page and executed on the
client-side (user’s web browser) than on the server-side.
'XSS' allows the attacker to insert malicious code (client
side script) and provide an opportunity for the attacker to
bypass access controls from the admin and deface the
website , such an internet security weaknesses of client-side
scripting acts as the prime culprits for this exploit, which
in-turn make XSS attack a big threat. XSS aims to analyze
and execute as client-side scripts of a web application in a
manner desired by the malicious user. In this exploitation
script is embedded in a webpage and executed every time
the page is processed. Despite of the fact that these attacks
are perilous, developers still lack in updating themselves
with the latest exploits and vulnerabilities. Moreover,
Security policies are often deemed as an additional
endeavor to be considered at the end of the software
project. That is why routine security tests should be the part
of an effective website development process. Also the

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1196

effective use of automated tools and scanners at particular
time intervals is firmly required. But unfortunately, these
tools alone cannot detect and eliminate all kinds of XSS
vulnerabilities, mainly because of the unpredictable
attributes of malicious code. To protect the client’s
environment from malicious code, there must be a filter
that can detect and prevent malicious activities by the third
party. An attacker can lure the client to render the page
containing the URL (the location and/or the referrer) partly
controlled by the attacker. When the user hits the link and
the data is processed by the page (typically by a client side
HTML-embedded script such as JavaScript), the malicious
JavaScript payload gets embedded into the page at runtime.
Input validation using HTTP POST submission method and
HTTP GET submission methods are vulnerable to XSS
attacks as it allows the user to manipulate the website
controls using code implementation. Although the HTTP
GET can be exploited more easily by an attacker because
all it needs is to change the URL. The exploitation may
change according to submission methods used by different
web-browsers. To rely completely on tools and scanners
can disgrace the developers and clients from the inevitable
results. As the attacking techniques are getting advance and
vigorous attempts made by attackers to manipulate the
malicious code are getting more rapid, different
methodology to develop for various platforms are costly
and time consuming. Therefore it is intended to propose a
methodology to develop a language independent filter and
detector that will be updated by the latest threats and will
secure web-pages written in various languages in the same
manner.

This study intends a security approach in which a
model of XSS- obliterator (a ‘two way filter’) is introduced
for detecting and sanitizing the malicious code at the client-
side and the server side also. It also classifies the XSS
attacks into two categories, in which the second category
defines the DOM-based XSS attack which is still the matter
of concern for the security analysts. Recently websites like
Facebook, Yahoo, Google™, Microsoft Dynamics
Canadian [12] were observed vulnerable to DOM-based
XSS attack as it is much harder to detect due to the fact that
it executes at runtime. The model utilizes the enhanced
defense mechanisms of input validation, filtering and
escaping special characters by exploiting updated features
of PHP functions. Furthermore, a platform-independent
solution is also proposed that allows the XSS- obliterator to
operate on different platforms, i.e. various combinations of
web servers, database servers, operating system. The
proposed model also addresses the problem of category II
DOM-based XSS attack and overcomes the limitation of
“L.K Shar and H.B.K Tan”, analyzing the client-side script
[9]. Finally the performance and accuracy of the proposed
model is evaluated.

The structure of the paper is as follows. Section II and
section III presents preliminary concepts and defense
mechanisms. Section IV explains discovering the category I
and II of XSS attack and section V demonstrates an
experiment that states vulnerable scenarios covering both
the categories of XSS attacks. Section VI describes the
proposed approach to detect & sanitize XSS vectors.

Section VII provides the performance evaluation of
proposed model on XSS attacks. Finally Section VIII
concludes the paper and addresses the future work.

II. METICULOUS ASPECT OF CROSS-SITE-

SCRIPTING VULNERABILITIES:
 In this section the relevant possibilities of XSS attack
and the circumstances that may lead to XSS vulnerabilities
is interpreted. In order to explore the potential aspects of
XSS, a HTML form that accepts the user input and
forwards it to the server for processing is analyzed. An
excerpt from a query form that uses HTML form to acquire
the reply for the query is given below:

<form action="query.php" method="GET">
Enter your query:
<input name="id" type="text" size ="25">
<input type="submit">
</form >

When the user submits the form, browser creates the
“http request” and sends it to the server. It is processed
through the “GET” command with the parameter “id”
which is responsible for retrieving data from the database.
The web application of the server receives the request and
start search process for the appropriate term in its database.
After the search process is complete, the “http response” is
composed by the server which is sent back to the browser
as the HTML content.

// Initialize
$queryitem = $_GET[’id’];
//query process
echo "You have queried for";
echo $queryitem;
echo “.”;
//List of Possible answers for the query

The above excerpt is a server-side script which receives
the term submitted by the user as a http request using
PHP’s automatically generated global array $_GET[‘id’].
The variable $queryitem stores the http request temporarily
and after obtaining the result from the database it echoes
the outcome within the page. For example if the user enters
“HELP ME” the resultant web page contains the following
HTML:

< >
You have queried for HELP ME .
< >

The GET method with parameter ‘id’ is echoed
uninterruptedly in the resulting HTML page. The GET
method retrieves data from the database in context with the
http request without validating the input data from the
front-end. Therefore it insures that the excerpt is highly
vulnerable to the XSS attack. If a JavaScript or a HTML
markup is entered in the input field, it will be included in
the webpage and displayed to all the users visiting the
webpage. For instance, if someone enters a JavaScript
“<script> alert(“XSS ATTACK ! !”)</script>” into the
input field or into the URL “id?= <script> alert(“XSS
ATTACK ! !”)</script>”, it will validate the input data and
the script is injected into the web application permanently.
Every time the page loads it will display a popup window
prompting the message “XSS ATTACK”. The malicious
code injection techniques can be either HTML injection or
Script injection [13]

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1197

III.DELIBERATIONS FOR XSS EXPLOITS:
A. Discover XSS attack:

The XSS vulnerability is present in those Web
applications that accepts data from users and dynamically
include it in servers then on web-pages without properly
validating the data. In this process, if the XSS vulnerability
is exploited then it allows an attacker to execute arbitrary
commands and display content in a victim’s browser. They
tend to bypass the normal security restrictions and execute
XSS vectors to steal victim’s session-id and hijack their
session [5]. While considering the black-box testing
approach, the following sections of website is vital to
operate:

1) Client-side URL XSS attack: The First type of
Attack is 'URL XSS' attack in which the access-point for
the malicious code is through the URL of the browser.
After inserting the code to the URL of the site, it is
submitted to the server to discover the exploit. In this type
the URL of the website is tampered, for example if the
website link is http://site.com?p=image then it implies that
the website has a search engine and currently the web-page
‘image’ has been requested by the user. This URL can be
overwritten with malicious script which in-turn is
submitted to the server to discover the vulnerability. This is
done by overwriting the ‘image’ in the URL with the
malicious script “<script>alert(1)</script>”. The
vulnerability assessment of URL-based code injection
deliberately prompts the server to verify the URL-based
vulnerability [10].

2) Client-side Input field attack: The Second Attack
is on input fields. Input fields in the web-page are the text
fields, radio-buttons, submit buttons, forms etc. These
fields are used to pass data to a server. For example , if we
talk about a site with a search engine and suppose we enter
‘word’, after page loads, it will show ‘Found 100 Results
For word', which indicates it is displaying data from the
linked server, now what if some malicious code is
executed? But some scripts never stays on the server, hence
these scripts are displayed just once as a page of result.

3) Server-side XSS attack: The Third Attack is the
type of attack where the malicious code is injected into the
server through the vulnerable input fields. These fields are
used as a gateway that sends input-data to the server. If the
webpage is vulnerable, malicious code is injected through
these fields and server unknowingly includes it into the
webpage. The malicious code can be either in HTML or
PHP. The HTML code is interpreted by the browser
but the PHP code is directly interpreted by the server.
For this reason, PHP code is less preferable for the security
analysts for the purpose of vulnerability check. Acunetix
elaborates the input field vulnerability assessment on an
Acunetix test-website with its practical mitigation
techniques [16]. The malicious code injected can either be a
PHP or HTML code. HTML is slightly different then PHP,
it first downloads the code into the pc in the form of
cookies (session), then makes it available to the browser
where the browser interpret the code. But in PHP the code
is interpreted directly on server (where the script is posted)

then the output is returned to the browser. For this reason,
PHP is less vulnerable to XSS. In this type of attack, the
script injected by the attacker gets stored in the server and
is displayed every time as a page of result to all the users of
that site. For this reason this attack is more devastating
variant of a cross-site scripting flaw.

B. Defense against XSS attack:

To ensure best security policies following defense
mechanism is recommended:

1) Differentiating defense mechanism via Input
Validation: The primary goal of input validation is to
provide better defense mechanism by properly detecting,
analyzing, manipulating and validating the unauthorized
data arriving before being processed by the application.
From the statics of three years (2010-12) “Percentage of
Web Applications Containing Input Validation
Vulnerabilities” [11], a gradual decline in input validation
vulnerabilities present in web applications was observed. If
the validation pattern of a particular website is well
structured with predefined parameters such as regular
expressions, drop down list, radio button, then it becomes
easy for the developers to design a secure validation
patterns. Input validation method analyzes the data received
from URL and input fields of website. The data received
from input-fields (text box, search box, forms etc) of the
websites requires analyzing POST method at server-side.
Similarly data received from URL requires analyzing GET
method at the server-side. The GET and POST method is
the key focus of the developers at testing-phase. More
secure will be the GET and POST method, less will be the
chance of XSS attack. An appropriate Input validation
requires defined set of rules (section 6B):

 To validate input data of the client side. It includes
the filter to check the data length, type and syntax
before the server process the data.

 Reject the suspicious pattern from the third party
or browser.

 Allow the valid HTML tags that may not be used
to execute XSS attack.

 Block all the scripts and HTML attributes.

2) Differentiating defense mechanism via Escaping:
The primary goal of escaping is to interpret input data from
the browser as regular data not as code. But some web
applications avoid this method because it requires use of a
standard escaping library like AntiXSS [14]. If proper
escaping mechanism is used, the evil scripts will not affect
other users of the website as it will not allow scripts to
execute and treat these scripts as a regular data. For
example in HTML, PHP and JAVASCRIPT, dangerous
characters such as <, > can be escaped by using < and
= respectively. The escaping of HTML, JavaScript,
CSS characters are given in Acunetix [15]. But attackers
find ways to bypass these security barriers by using
advance bypassing techniques.

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1198

3) In combination with escaping method,
Sanitization method is also crucial to consider for
better security measures.

4) Differentiating defense mechanism via
Sanitization: Sanitization is a technique that either catches
or scans the malicious characters from the user inputs and
concurrently replaces it with non-malicious ones. The XSS
codes could enter through external source such as
<FORM> or through complex route such as JSON script
[16]. Therefore it can’t be trusted and proper filtration is
required for external sources. The best defense practice for
the developers would be to design a filter that will obstruct
the special characters (‘’ # & () / ;) in JavaScript, CSS
styles and XML codes containing event handlers. In this
technique the suspected codes containing the evil characters
is searched by the filters and replaced with the null
characters or empty strings (section 6.B). However some
intruders comfortably manage to bypass these filters also
by using the encoding techniques such as hex encoding,
Unicode character variations and null characters. This
bypassing technique is known Advance XSS bypassing
technique. In order to make these filters more efficient,
developers should regularly update and maintain their
library by a reliable source like ESAPI, AntiXss and
Acunetix. The use of HTML markdown library is good for
eliminating HTML markup such as bold, underline, colors
as it converts the user inputs into standard XHTML that
minimizes the use of HTML markup [17].

IV. XSS CATEGORIES WITH THE EQUIVALENT

VULNERABLE MODULE
In this paper we have categorized Cross-site-scripting into
two categories:
Category I: persistent XSS attack
Category II: Reflective DOM-based XSS attack:
 Here we have combined two forms of XSS attack (Non-
persistent and DOM based) into a single category: Category
II Reflective DOM-based attack. The Non-persistent and
DOM based attack works in the same fashion and executed
with the aid of a specially crafted link containing malicious
code, or a malicious web page laced with a web form, when
posted to the vulnerable site will commence the attack.
These specially crafted links are the intermediate links of
an attacker. If any vulnerable resources accept only the
HTTP POST method, the attacker might implant a
malicious form. The attacker entices the user to submit the
malicious form or click the intermediate link and when the
user get trapped, the XSS payload is provoked and
executed by the user’s browser.
 The Persistent XSS attack is different from the other
variants of XSS attack because here the code is stored
permanently to the database. The attacker generally targets
message board, web mail message, web chat, query posts,
search engine, login forms or server-side code directly, if
admin panel is accessed.
To determine the vulnerability source of both the
categories of XSS attack, an open source PHP based
website ‘LMS’ is evaluated on the Bitnami framework.
Both the categories of XSS attack with their equivalent
vulnerable codes are listed below:

A. Analyzing Cross-site-scripting Category I at server-
side:

Persistent (or stored) cross-site scripting vulnerability occur
when the attacker injects the malicious code as user input
into the server and the code is saved permanently by the
server. Thereafter, it is displayed every time as a page of
result to the users visiting the webpage in the course of
regular browsing, so anyone who views the site may see it
permanently. For this reason stored XSS is much more
devastating than the reflected XSS. By exploiting the
persistent XSS vulnerability, attacker may replicate large
amount of malicious data to the users. For example the
Samy XSS worm that affected Myspace a few years ago.
“The First 24 Hours of Propagation: Samy Sets a
Record”[6]. The vulnerable module in table 1 (a) is a
snippet of the page about.php at server-side, which allows
the users to seek the website’s information. In this case the
server-side code is evaluated to determine the persistent
XSS vulnerability. Though accessing the admin-panel is the
only way to inject XSS payload which not an easy task for
an attacker, but if the page contains input-fields such as
message and comment, the attacker can exploit the
vulnerable code without acquiring access to the admin-
panel. The input field penetration is illustrated in table 2.

The vulnerable code $mission_query and $mission_row
variables displays and fetch data from the table named
‘content’. The echo $mission_row[‘content’] is directly
displaying vulnerable data on webpage. When the
malicious JavaScript <script>alert("PERSISTENT
ATTACK DEMONSTRATION !!")</script> injected in
the about.php from the vulnerable admin panel, it validated
the script and the script get permanently stored into the
database at line 70 that allowed it to execute on the browser
showing a pop-up-window with the message
“PERSISTENT ATTACK DEMONSTRAATION !!”.
Whenever a user visits the page about.php, the pop-up-

(a) Category-I Persistent XSS vulnerable code at server-side
where the visitors seek website’s information and (b) Category-
II XSS vulnerable script executes at client-side.

snippet (a)
<?php
$mission_query = mysql_query("select * from content where
title = 'mission' ")or die(mysql_error());
$mission_row = mysql_fetch_array($mission_query);
echo $mission_row['content'];
?>
<hr>
<?php
$mission_query = mysql_query("select * from content where
title = 'vision' ")or die(mysql_error());
$mission_row = mysql_fetch_array($mission_query);
echo $mission_row['content'];
?>
snippet (b)
<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.le
ngth));
</SCRIPT>

TABLE 1: XSS vulnerable snippets

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1199

window will appear each time as a page of result. The
attack performed was a passive attack and therefore it did
not debilitate the system. But what would happen if an
attacker discovers persistent XSS vulnerability before the
security analysts? He may apply an active attack to deface
the site or steal cookies of the legitimate users. Therefore
the study illustrates that it is intended to apply a filter and
detector to the vulnerable variables like echo $var (where
var can be any variable) that will suitably validate and fetch
the data from the database and echo it to the user.

B. Analyzing Cross-Site-Scripting Category II at client-

side:
The XSS category-II vulnerability deal with the reflective
DOM-based XSS attack script. In this category, the attacker
performs a runtime embedding of the malicious code in the
client side, from within a page served by the web server
.Unlike XSS category-I, the reflective DOM-based XSS
does not require the web server to receive the malicious
code. An attacker don’t need to access the source-code at
server-side and then inject the XSS vector or check for the
vulnerable code that validates the XSS vector and then
store it into the database of the server. Instead the attacker
seeks for the reflection point (error message, search bar,
URL point) in the webpage and then embeds the vector.
The XSS vector doesn’t get stored into the database and
neither processed by the server, indeed it executes at the
browser. For instance, In December 2006, Stefano Di Paola
and Giorgio Fedon described a universal XSS attack
against the Acrobat PDF plugin [7]. The attack applied to
the PDF documents served to the browser. When rendered
by the Acrobat plugin, the javascript get executed [8]. The
existence of reflective DOM-based XSS attack is typically
in the static HTML page. The precondition of a HTML
page that processes a DOM attack is the exploitation of the
data from the different DOM objects such as
document.location, document.URL, document.referrer etc.
The LMS’s vulnerable module exploits document.URL
object that could be a possible target for an attacker. Note
that the document object is the representation of the parsed
HTML, also these objects are not extracted from the HTML
body and do not appear in the webpage.

In the case of LMS, the reflection point is the
URL:http://localhost/lms/ajax_xss_obli/Welcome.php?nam
e=amit. The URL is reading the data from the input field
“Please type your name” directly to change the page
content. When the malicious JavaScript vector
:<script>alert(1)</script> injected into the URL, the vector
alerted the pop-up-window with message “1” assuring the
XSS attack. This vulnerability is due to the object present
in JavaScript document.URL.indexOf("name=") that reads
the data from the input field “name” and
document.write(data) writes the data received from the
input field directly to the webpage. The attack worked due
to the fact that when the script is injected, the browser
received the link and sends an HTTP request to the
database to receive the static HTML page. After this, the
browser starts parsing the HTML into Document object
model. The object used in the HTML page is ‘document’
with the property of URL and the due to this property the

malicious code as a JavaScript executed. When the parser
arrives to the JavaScript code in the HTML page,
JavaScript is executed and the page content is modified.
The script code then refers to the document.URL which is
then immediately parsed and the malicious code is executed
at the runtime without being processed by the server.

V. EXPERIMENT TO DEMONSTRATE VULNERABLE

SCENARIOS:
Based on the extracted artifacts on XSS category I and II,
the extent of XSS vulnerabilities are evaluated in the same
website. This website is designed for student-teacher
interaction to submit assignments, communicate via
message, share files and make announcements. The
experiment is performed using two commercial browsers
Internet Explorer 9 (I.E) and google chrome v31 (G.C) in
the bitnami framework with the following specifications:

 Database Server type: MySQL (5.5.34)
Community Server (GPL)

 Web Server type: Apache
 phpMyAdmin version 4.1.4
The experiment shows equal set of XSS vectors

applied on input fields, source-code & URL points. The
case where vector executed is set to 1 else 0.

A. Scenario X:

Here the XSS vectors are injected on the input fields:
message, add/submit assignment, admin-panel’s content. A
set of five XSS vectors are taken in which 1st vector is
passive and rests are active. The 1st and 2nd vectors are
injected on ‘message’ of the module
‘send_message_teacher_to_student’ &
‘send_message_student_to_teacher’. The 3rd vector is
injected on ‘admin-panel’s content’ module and 4th, 5th
vectors are injected on ‘add/submit assignment’ module. It
is observed that all the vectors applied on these fields
executed on both the browsers and which assures a
Category-I XSS vulnerability. The XSS attack executed
due to the existence of unsecured sensitive variables
$_POST, $_GET & echo $var (where ‘var’ is a variable)
which validated these vectors. These variables are stated as
sensitive variables in the table 2. For every vector injected,
the corresponding sensitive variable is depicted within the
module.

B. Scenario Y:

In this scenario Category I XSS attack is illustrated in
which a set of five active XSS vectors are injected
within the
vulnerable statements in the source-code as shown in table
3. The target area for injection is the access-point of XSS
vectors in HTML elements like tags, attributes and event
handlers present in different modules of the
website.

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1200

TABLE 2: Scenario X (XSS Category I attack executed on Input-fields)

XSS vectors Sensitive
variables

Impact without
XSS

OBLITERAT
OR

I.E G.
C

1 <script>alert(1)</script> $_POST 1 1

2 <img
src="http://localhost/lms/lms/admin
/uploads/girl.png">

$_POST 1 1

3 <script>alert(document.cookie)</sc
ript>

echo $var 1 1

4 <EMBED
SRC="http://localhost/lms/ajax_xss
_obli/test.swf"
AllowScriptAccess="always"></E
MBED>

$_POST 1 1

5 <iframe
src=http://localhost/lms/ajax_xss_o
bli/nonPersistant_v.php>

$_GET 1 1

TABLE 3: Scenario Y (XSS Category I attack executed on Source-Code)

XSS vectors Vectors
Injected on
vulnerable
statements

Impact without
XSS

OBLITERATOR

I.E G.C

1 <!--
[if]><script>alert(1)</script -
-> <!--[if<img src=x
onerror=alert(2)//]> -->

within
<body>tag

1 0

2 <button
formaction="javascript:alert(
1)">X</button>

‘formaction’
attribute

0 1

3 <body
oninput=alert(1)><input
autofocus>

‘oninput’
event handler

0 1

4 <iframe srcdoc="<img
src=x:x
onerror=alert(1
)>"/>

‘srcdoc’
attribute

0 1

5 <object
allowscriptaccess="always"
data="test.swf"></object>

<object> tag
directly

including flash
file

0 1

TABLE 4: Scenario Z (XSS Category II attack executed on URL)

XSS vectors Impact without
XSS

OBLITERATOR
I.E G.C

1 <script>alert(1)</script> 1 0

2 <img
src="http://localhost/lms/lms/admin/uploads/g
irl.png">

1 0

3 <script>alert(document.cookie)</script> 1 0

4 <title onpropertychange=alert(1)></title><title
title=></title>

1 0

5 <SCRIPT FOR=document
EVENT=onreadystatechange>alert(1)</SCRI
P>

1 0

It is observed that XSS vectors executed on both the
browser diverged from the previous scenario. Only the 1st
vector is executed in I.E browser and except for the 1st
vector, rest vectors are executed in G.C browser.

C. Scenario Z:

This scenario of XSS attack entirely represents the
Category II Reflective DOM-based XSS attack. A set of
five XSS vectors are injected into the URL of the browser.
The vulnerable reflective-point evaluated in 4(ii) is taken as
an access-point for the set of XSS vectors illustrated in
table 4. It is observed that all the vectors are executed in I.E
browser and neither of the vectors executed in G.C
browser, as shown in table 4. The experiment was aimed to
determine the vulnerable areas present in the website where
the XSS attack are most likely to occur. The vulnerability
that covers both the categories of XSS attack is divided into
three Scenarios, Scenario X & Y for the Category I XSS
attack and Scenario Z for Category II XSS attack.

TABLE 5: Recommendation for XSS-obliterator

Scenario XSS Attack
Successful
in I.E (%)

XSS Attack
Successful
in G.C (%)

I.E specific
applications

G.C specific
applications

X 100 100 HIGH HIGH
Y 20 80 LOW HIGH
Z 100 0 HIGH LOW

Based on the evaluation of three Scenarios, Table 5 is
formulated to report the liability for the proposed XSS-
obliterator in the vulnerable areas. From the experiment it
is worth noticeable that the execution of XSS vectors varies
in different browsers. Therefore, recommendation for XSS-
obliterator in the browser-specific applications is depicted
as HIGH and LOW. Where HIGH is ranges between 30-
100% and low ranges between 1-29 %. In the Scenario X,
necessitate of XSS-obliterator is very high because all the
attacks executed in both the browsers. While in Scenario Y,
that is in source-code injection, necessitate of XSS-
obliterator is low in case of I.E and high in case of G.C and
vice-versa in Scenario Z.

VI. PROPOSED MODEL OF XSS-OBLITERATOR:
A. XSS-obliterator framework:

On the basis of the necessity for security mechanism to
prevent Category I and II XSS attack, XSS-obliterator is
introduced. It is a two way filter-detector that comprises of
two phases: detect and sanitize the malicious code (i) from
client-side and (ii) from server-side.

The framework for detection and sanitization of the
malicious code (XSS vectors) received from client/server-
side is shown in figure 1. The framework has six modules:
browser, XSS-obliterator, XSS-detector, XSS-filter,
malicious-code handler and database. These modules
functions in the following steps:

1) First the XSS-detector module in the Application
server receives the input data from the browser
module via http-request. It may be a legitimate or
malicious data.

2) The XSS-detector module contains a pattern of
‘malicious code’ (used in XSS attacks) and a
pattern of ‘allowed characters’ defined in the XSS-

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1201

obliterator (allows the data to pass to the server
directly).

Fig 1: XSS-obliterator framework

3) The input data is then matched with both the
patterns in the malicious code handler. If the
input-data match the malicious code pattern, the
handler passes the data to the XSS-filter module,
else the data is passed directly to the database
module.

4) The XSS-filter receives the malicious data and
sanitizes the malicious characters present in the
data. Then the sanitized data is passed to the
database module of the server.

5) In response, the database module sends requested
data via http-response to the XSS-detector module
again. If the response data is malicious, then step 3
is repeated.

6) Finally the browser module receives the sanitized
data as response from the server.

B. Algorithm:

Algorithm for XSS-obliterator:
1. Declare allowed HTML TAGS.
2. Detect malicious code using XSS-detector

algorithm.
3. If any detection found pass data to XSS-filter

algorithm, else display/store the data.
Algorithm for XSS-detector:

1. Convert input data to lower case.
2. Load malicious code patterns.
3. Match patterns in input data.
4. If pattern found in input data set Result to true else

false ($result = true).

5. Return the result (return $result).
Algorithm for XSS-filter:

1. Remove any null characters i.e. '\0' and replace it
with (‘’) null character.

2. Remove any JavaScript and replace it with null
character (‘’).

3. Normalize data using html special symbol code.
4. Convert data to lowercase.
5. Remove all slashes.
6. Match HTML tags in data.
7. Trim and remove malicious HTML tags and

protocol data.
8. Accept allowed attributes only.

 The XSS-obliterator contains the string ‘$allowed’
that contains the array of HTML tags (i, a, p, img, font, br,
pre, ul, li, table, td, tr, th) to be bypassed by the filter and
declare it in “allowed characters” pattern. This function
classifies the data received from client/server as ‘Rich data’
(set as 0) containing scripts or tags and ‘Legitimate data’
(set as 1) without any special characters. It then classifies
the data from server-side/client-side as ‘Rich data’ (set as
0) containing scripts or tags and ‘Normal data’ (set as 1)
without any special characters. If the data is a malicious
code with a defined malicious pattern in the XSS-detector,
The malicious code will be sanitized by the filter and If the
data is not malicious then it will be passed to the database
(in case of input data from client) or to the browser (in case
of data arriving from the server-side) without being
sanitized. The malicious pattern is defined in the set of
arrays as shown below:

$pattern[0] = "(.*)<script>(.*)</script>(.*)";
$pattern[1] = "(.*)<!--(.*)-->(.*)";
$pattern[2] = "(.*)<div (.*)</div>(.*)";
$pattern[3] = "(.*)<(.*)href=(.*)/>(.*)";
$pattern[4] = "(.*)<style>(.*)</style>(.*)";
$pattern[5] = "(.*)<(.*)>(.*)";
$pattern[6] = "(.*)>(.*)<(.*)<(.*)";

C. Platform Independent Solution:
The platform –independent solution is obtained by using
Ajax given below:

var request = $.ajax(
{
url: "http://localhost/lms/ajax_xss_obli/ajax_xss_obli.php",
type: "POST",
dataType: "html",

data: {vdata: text}

 });

In this case the XSS-obliterator (ajax_xss_obli.php) is
maintained in the centralized php server and the Ajax code
is included into the servers seeking security via XSS –
obliterator. Thereafter web applications developed in
different languages can execute the XSS-obliterator at any
operating system.

TABLE 6: Resultant table

XSS
VECTORS

Variants

Total Number of Variables
XSS Vectors Executed on Vulnerable
Variables(XSS OBLITERATOR not

Applied)

XSS Vectors Successful on Vulnerable Variables
(XSS OBLITERATOR Applied)

$_GET $_POST echo $var $_GET $_POST echo $var $_GET $_POST echo $var
>250 61 247 620 4 76 219 0 0 0

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1202

VII. PERFORMANCE EVALUATION:

To evaluate the performance of the XSS-obliterator against
XSS attack manual pen-testing is accomplished on the
local- host in which the blending of more than 250 variants
of XSS

vector were injected to depict the variables that are
vulnerable to XSS attack as shown in table 6. The
foundation of category I XSS vulnerability lies within the
detected vulnerable variables $_GET, $_POST, echo $var.
It is observed that 6/61 $_GET, 86/247 $_POST and
279/620 echo $var variables were found to execute XSS
vectors when XSS-obliterator has not applied. But when
the XSS-obliterator is applied, it successfully obliterated all
the given variants of XSS vectors. The XSS-obliterator also
found successful to obliterate the category II reflective
DOM-based XSS attack when applied in the vulnerable
document-object ‘document.write()’ in table 1(b).It is
worth noticeable XSS-obliterator is also independent of
browser-specific applications discussed in section 5. As
a result vectors described in Scenario X and Z did not
executed on both the browsers when XSS-obliterator is
applied. The proposed model does not provide protection
against SQL-injection attack. Therefore if an attacker
manages to acquire the admin-panel using SQL-injection,
he may access the source-code and inject malicious code as
shown in table 3 (scenario Y), which leaves the only
possibility where an attacker can take advantage over the
XSS-obliterator. Furthermore, the fact that the server-side
assessment obliterates the resident XSS vectors in the
server, this model can also be utilized by those websites
that are already contaminated by XSS vectors. In
summary, the performance evaluation shows the accuracy
of the proposed model to rectify and sanitize the defiled
XSS vectors and could be useful in aiding existing
automated tools to prevent XSS attacks.

VIII. CONCLUSION AND FUTURE WORK:

The Existing security approaches are inefficient in
detecting and sanitizing XSS attacks especially DOM-
based attack. Therefore current solutions ardently require
the proposed approach of XSS-obliterator to avoid XSS
attack. To determine the impact of XSS attack an
experiment is conducted in which set of 5 XSS vectors are
injected on three vulnerable points: Input-field, URL and
source-code categorized into scenarios X, Y, Z
respectively. Scenario X & Y demonstrate persistent XSS
attack and Z demonstrate reflective DOM-based XSS
attack. This illustrates the varying execution of XSS
vectors on two commercial browsers when XSS-obliterator
has not been applied. Based on these facts,
HIGH or LOW necessity of XSS-obliterator on browser-
specific applications is recommended. Thereafter a 6-
module-framework of XSS-obliterator and algorithm is
proposed. The
algorithm is described in three parts: XSS-obliterator, XSS-
detector and XSS-filter. Moreover this paper also proposes
a platform-independent solution for the XSS-obliterator by

the application of AJAX. Finally the performance of the
model is evaluated in which it is proved that the model
accurately and
effectively obliterates the persistent and reflective DOM-
based XSS attack. For future work the model can be further
extended with more complex pattern of malicious code and
also avoid centralized server to get overloaded due to huge
number of requests to sanitize i/o data.

REFERENCES:
[1] https://www.owasp.org/index.php/Top_10_2013-A3-Cross -

Site_Scripting_(XSS)

[2] http://cwe.mitre.org/top25/#CWE-79

[3] http://securityaffairs.co/wordpress/18230/cyber-crime/ibm-x-force-
2013-mid-year-trend-risk-report.html.

[4] http://www.acunetix.com/blog/news/acunetix-comparison-web-
application-scanners

[5] Cross-Site Scripting (XSS) Tutorial: Learn About XSS
Vulnerabilities, Injections and How to Prevent Attacks Example 1,
http://www.veracode.com/security/xss.

[6] Cross-Site Scripting Worms & Viruses, The Impending Threat & the
Best Defense.

[7] “Subverting Ajax” (23C3 presentation), Stefano Di Paola and
Giorgio Fedon, December 2006

[8] https://www.owasp.org/index.php/DOM_Based_XSS .
[9] L.K. Shar and H.B.K. Tan, "Auditing the XSS defence features

implemented in web application programs", Software, IET, Vol. 6,
Iss. 4, pp. 377–390, 2012

[10] Lwin Khin Shar and Hee Beng Kuan Tan, "Defending against Cross-
Site Scripting Attacks", IEEE Computer, Vol. 45(3), pp 55-62,
March-2012.

[11] Web Application Vulnerability Statistics 2013 Jan Tudor , June 2013

[12] http://www.acunetix.com/blog/web-security-zone/chronicles-dom-
based-xss/

[13] https://www.owasp.org/index.php/HTML_Injection

[14] http://msdn.microsoft.com/en-us/security/aa973814.aspx

[15] http://www.acunetix.com/blog/web-security-zone/preventing-xss-
attacks

[16] https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prev
ention_Cheat_Sheet (RULE #3.1)

[17] http://phpsecurity.readthedocs.org/en/latest/Cross-Site-Scripting-
(XSS).html (HTML sanitization).

Amit Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1196-1203

www.ijcsit.com 1203

